Homomorphisms and Higher Extensions for Schur Algebras and Symmetric Groups

نویسنده

  • ALISON PARKER
چکیده

This paper surveys, and in some cases generalises, many of the recent results on homomorphisms and the higher Ext groups for q-Schur algebras and for the Hecke algebra of type A. We review various results giving isomorphisms between Ext groups in the two categories, and discuss those cases where explicit results have been determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Row and Column Removal Theorems for Homomorphisms of Specht Modules and Weyl Modules

We prove a q-analogue of the row and column removal theorems for homomorphisms between Specht modules proved by Fayers and the first author [16]. These results can be considered as complements to James and Donkin’s row and column removal theorems for decomposition numbers of the symmetric and general linear groups. In this paper we consider homomorphisms between the Specht modules of the Hecke ...

متن کامل

One More Pathology of C-algebraic Tensor Products

Following E. Kirchberg, [3], we call a bifunctor (A,B) → A⊗α B a C -algebraic tensor product functor if it is obtained by completing of the algebraic tensor product A ⊙ B of C-algebras in a functional way with respect to a suitable C-norm ‖ · ‖α. We call such a functor symmetric if the standard isomorphism A ⊙ B ∼= B ⊙ A extends to an isomorphism A⊗αB ∼= B⊗αA. Similarly, we call it associative ...

متن کامل

A categorical approach to classical and quantum Schur–Weyl duality

We use category theory to propose a unified approach to the Schur–Weyl dualities involving the general linear Lie algebras, their polynomial extensions and associated quantum deformations. We define multiplicative sequences of algebras exemplified by the sequence of group algebras of the symmetric groups and use them to introduce associated monoidal categories. Universal properties of these cat...

متن کامل

Computing the Frobenius-schur Indicator for Abelian Extensions of Hopf Algebras

Let H be a finite-dimensional semisimple Hopf algebra. Recently it was shown in [LM] that a version of the Frobenius-Schur theorem holds for Hopf algebras, and thus that the Schur indicator ν(χ) of the character χ of a simple H-module is well-defined; this fact for the special case of Kac algebras was shown in [FGSV]. In this paper we show that for an important class of non-trivial Hopf algebra...

متن کامل

Schur-weyl Duality

Introduction 1 1. Representation Theory of Finite Groups 2 1.1. Preliminaries 2 1.2. Group Algebra 4 1.3. Character Theory 5 2. Irreducible Representations of the Symmetric Group 8 2.1. Specht Modules 8 2.2. Dimension Formulas 11 2.3. The RSK-Correspondence 12 3. Schur-Weyl Duality 13 3.1. Representations of Lie Groups and Lie Algebras 13 3.2. Schur-Weyl Duality for GL(V ) 15 3.3. Schur Functor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004